Stinespring’s theorem for unbounded operator valued local completely positive maps and its applications

نویسندگان

چکیده

Dosiev (2008) obtained a Stinespring’s theorem for local completely positive maps (in short: CP-maps) on locally C ∗ -algebras. In this article suitable notion of minimality construction has been identified so as to ensure uniqueness up unitary equivalence the associated representation. Using Radon–Nikodym type proved. Further, unbounded operator valued Hilbert modules over -algebras (also called CP-inducing maps) presented. Following M. Joiţa, shown. both cases derivative is contraction some complex space with an upward filtered family reducing subspaces.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Radon-nikodym Theorem for Completely Multi-positive Linear Maps and Its Applications

A completely n -positive linear map from a locally C∗-algebra A to another locally C∗-algebra B is an n × n matrix whose elements are continuous linear maps from A to B and which verifies the condition of completely positivity. In this paper we prove a Radon-Nikodym type theorem for strict completely n-positive linear maps which describes the order relation on the set of all strict completely n...

متن کامل

Operator-Valued Bochner Theorem, Fourier Feature Maps for Operator-Valued Kernels, and Vector-Valued Learning

This paper presents a framework for computing random operator-valued feature maps for operator-valued positive definite kernels. This is a generalization of the random Fourier features for scalar-valued kernels to the operator-valued case. Our general setting is that of operator-valued kernels corresponding to RKHS of functions with values in a Hilbert space. We show that in general, for a give...

متن کامل

On positive operator-valued continuous maps

In the paper the geometric properties of the positive cone and positive part of the unit ball of the space of operator-valued continuous space are discussed. In particular we show that ext-ray C+(K,L(H)) = {R+1{k0}x⊗ x : x ∈ S(H), k0 is an isolated point of K} ext B+(C(K,L(H))) = s-ext B+(C(K,L(H))) = {f ∈ C(K,L(H) : f(K) ⊂ ext B+(L(H))}. Moreover we describe exposed, strongly exposed and denti...

متن کامل

Egoroff Theorem for Operator-Valued Measures in Locally Convex Cones

In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...

متن کامل

A RADON-NIKODYM THEOREM FOR COMPLETELY n-POSITIVE LINEAR MAPS ON PRO-C-ALGEBRAS AND ITS APPLICATIONS

The order relation on the set of completely n-positive linear maps from a pro-C-algebra A to L(H), the C-algebra of bounded linear operators on a Hilbert space H, is characterized in terms of the representation associated with each completely n-positive linear map. Also, the pure elements in the set of all completely n-positive linear maps from A to L(H) and the extreme points in the set of uni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 2021

ISSN: ['0019-3577', '1872-6100']

DOI: https://doi.org/10.1016/j.indag.2021.01.001